Analyzing Student Inquiry Data Using Process Discovery and Sequence Classification
نویسندگان
چکیده
This paper reports on results of applying process discovery mining and sequence classification mining techniques to a data set of semi-structured learning activities. The main research objective is to advance educational data mining to model and support self-regulated learning in heterogeneous environments of learning content, activities, and social networks. As an example of our current research efforts, we applied temporal data mining analysis techniques to a PSLC DataShop data set [17, 18, 19, 20]. First, we show that process mining techniques allow for discovery of learning processes from student behaviours. Second, sequential pattern mining is used to classify students according to skill. Our results show that considering sequences of activities as opposed to single events improved classification by up to 230%.
منابع مشابه
Using WebQuest in Medical Education
Introduction: Today modern teaching and learning approaches in medical education have received considerable attention. This paper aims to introduce WebQuest as a new method of inquiry-based learning through the use of Internet. Also its application in medical sciences education in general, and especially nursing education is explained. Methods: To find articles related to the WebQuest topic, t...
متن کاملDevelopment of Students’ Creativity through Learning Models in Physical Education during the Covid-19 Pandemic
Background. Physical education learning in the era of the COVID-19 pandemic has a remarkable impact on students’ creativity. Objectives. This study aims to determine the effect of applying the inquiry and discovery models in online physical education learning to develop high school students’ creativity. Methods. The multiple treatment and control with the pre and post-test procedure were used...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملImproving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering
Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015